Soybean rust was found in several states in the southern United States in November of 2004. The rust pathogen can only survive on living plant material. Although the soybean rust fungus may not overwinter in the central or northern soybean production regions of the United States, it does survive the winter months on hosts, such as kudzu, in the southern United States.

Iowa State University Extension plant disease scientists expect that outbreaks of soybean rust in Iowa will happen only after several connected, timely events. The three primary events that must happen each crop season are the production of spores early in the season in the South, the spread of large numbers of those spores from there to Iowa, and then the occurrence of weather in Iowa that is conducive for disease establishment and development.

Each event is equally important because an outbreak will not occur if one of those events is missing. The early symptoms of soybean rust are similar to other diseases that are more common to Iowa soybean fields, so information on the similarities and differences between soybean rust and these diseases have been included in this publication.
SYMPTOMS

Early symptoms of rust infection begin on the lower leaves deep in the canopy as small spots that increase in size and change from gray to tan or reddish brown usually on the lower leaf surfaces. Mature spots consist of small pustules (pimple-like structures) surrounded by slightly discolored dying areas with masses of spores on the lower leaf surface (Figure 1). Lesions are scattered within yellow areas that appear see-through (translucent) if the affected leaves are held up to the sun (Figure 2). Once pod set begins on soybean, infection can spread rapidly to the middle and upper leaves of the plant.

After infection, pustules (Figure 3) can be seen after about 10-14 days. The pustules produce masses of spores (Figure 4), and spore production may continue for weeks. Spores are easily spread by the wind. Soybean plants are susceptible to soybean rust at any stage of development, but symptoms are most common during and after flowering. The disease usually starts within the low to mid canopy and moves up the plant (Figure 5).

DEVELOPMENT

The development of soybean rust is favored by prolonged periods of leaf wetness (6–12 hours) and moderate temperatures of 60 to 85 degrees F. Extended periods of cool, wet weather or high humidity (75-80 percent) during the growing season would favor soybean rust epidemics.

Weather conditions in Iowa will not always favor widespread or severe rust development, even when spores are present. However, dense canopies will provide an ideal microclimate that encourages disease development.

SCOUTING FOR SOYBEAN RUST

Follow the national movement of rust closely. If rust development in the southern U.S. is slow, scouting efforts can be delayed. If needed, local scouting should be done between the R1 growth stage and R5 growth stages (mid to late August).

1. Walk through an entire field in a standard scouting pattern. For example, walk across the field in a W-shaped pattern.
2. Periodically stop and examine soybean plants. Look low and deep into the canopy of the plants.
3. Closely examine the plants for mottled yellow leaves with pustules (pimple-like structures) on the underside. If you suspect rust but no pustules are present, a sample of leaves can be placed in a self-closing plastic bag. The leaves can be inspected daily for up to a week for the development of pustules.
4. Areas in the field with distinct yellowing or browning of the leaves or areas with dense canopy should be targeted in addition to those areas covered by the standard scouting pattern.
Brown Spot
Septoria glycines
Causes small, irregular-shaped, dark brown spots scattered on the upper and lower surface of leaves. Adjacent spots frequently join together to form dead blotches. Late in the season, affected leaves may turn yellow or orange-brown and drop prematurely.
This disease is very common, and is usually one of the first to appear on young plants, starting at V2 stage. It begins at the bottom of the plant and moves up the plant if conditions are favorable (warm and wet).

How does this differ from soybean rust?
Spots more angular; no pustules on the underside of the leaf.

Bacterial Blight
Pseudomonas savastanoi pv. glycinea
Causes small, angular, yellow-to-brown spots surrounded by yellow halos. The angular spots enlarge and join together producing large, irregular dead areas. The centers of old dead areas tear away so infected leaves have a ragged appearance.
This disease is seen on the leaves at the top of the plant. It is very common and usually one of the first to appear on young plants, starting at V2 stage. It is common after heavy rains and if temperatures remain cool.

How does this differ from soybean rust?
Angular spots; ragged leaves; no pustules on underside of the leaf.

Bacterial Pustule
Xanthomonas campestris pv. glycinea
Causes small, yellow-green spots with angular reddish-brown centers. The spots may join together to form large, irregular dead areas that rupture and tear away during windy, rainy weather. Pustules may be seen on the underside of the leaf surface.
This disease is seen on the leaves at the top of the plant. Favorable conditions are high temperatures and higher-than-average rainfall.

How does this differ from soybean rust?
Pustules not associated with each lesion; pustules do not have spores; pustule openings are cracks instead of round pores.

Frogeye Leaf Spot
Cercospora sojina
Causes small angular spots with gray centers and distinct purple to reddish brown margins. In older spots, dark fungal structures form in the center of the spot and the spots look like frog eyes.
This disease is found in the mid and upper canopy during warm and humid weather. It usually occurs in mid to late season.

How does this differ from soybean rust?
Spots are larger; spots have dark, defined edges; no pustules on underside of leaf.

Cercospora Leaf Blight
Cercospora kikuchii
Starts as a mottled purple-to-orange discoloration that becomes orange or bronze. The leaves become leathery in texture.
Usually occurs on topmost three to four trifoliate leaves and on the upper surface of the leaf in warm, wet weather. It usually occurs in mid to late season.

How does this differ from soybean rust?
Only upper leaf surface discolored; few spots and no pustules on underside of the leaf.

Downy Mildew
Peronospora manshurica
Causes light-green to yellow, irregular shaped spots on the upper surface of the topmost leaves. On the underside of the leaves, the fungus may be seen growing out of the center of the spots.
Usually occurs on topmost three to four trifoliate leaves and on the upper surface of the leaf in warm, wet weather. Usually occurs in mid to late season.

How does this differ from soybean rust?
Spots are larger; no pustules on underside of leaf; fuzzy fungal growth may be seen.
Fungicides currently are the only viable option for management of soybean rust. To manage the disease effectively and economically, spray the chemicals at the recommended time.

For more information on fungicide use for management of soybean rust, please see ISU bulletin PM 2028 Managing Soybean Rust with Fungicides 2006 or visit www.soybeanrust.info.

Iowa Soybean Rust Team
To help Iowa producers prepare for soybean rust, Iowa State University (ISU), the Iowa Soybean Association, the Iowa Department of Agriculture and Land Stewardship and the United States Department of Agriculture—Animal and Plant Health Inspection Service formed the Iowa Soybean Rust Team.

Therefore, immediately contact an Iowa Soybean Rust First Detector if you suspect soybean rust in your soybeans. First Detectors can be found by visiting www.soybeanrust.info or your local Iowa State University Extension county office.

MANAGEMENT
Currently no rust–resistant soybean varieties are available for Iowa growers. However, a worldwide effort is underway to identify new sources of resistance and determine the stability of the few sources of resistance currently identified.

At best, cultural practices like row width, different plant dates and tillage may have minimal, inconsistent positive effects on rust management.